Parts are labeled here in order of installation. See other side of sheet for details on kit contents.

Installation Diagram

Front Control Valve Body

1. Before removing OE boost sleeve, take note of the adjustable step/retainer location and ensure the Sonnax sleeve is installed at the same height/location. Failure to do so will result in incorrect line rise.

2. OE Spring

3. Middle Control Valve Body (Front)

4. Middle Control Valve Body (Back)

5. Spring not utilized in all units. See step seven of installation steps on page two for details.

6. Middle Control Valve Body (Front)

7. Middle Control Valve Body (Back)

8. Middle Control Valve Body (Front)

9. Middle Control Valve Body (Back)

10. 2nd Rear Control Valve Body

In addition to general rebuilding tips and technical information, the technical booklet included in this kit contains vacuum testing and additional repair options for higher mileage units or for repairing specific complaints which are beyond the scope of this kit.
Kit Contents & Installation Steps

Step 1 Replace OE Solenoid Modulator Line-up

NOTE: Remove all OE bore components. Discard all except OE end plug and retainer which will be reused.

Install Sonnax solenoid modulator valve assembly with open end outboard, followed by the spacer sleeve also with orificed end outboard. Install Sonnax spring. Reinstall OE end plug and retainer.

Packaging Pocket 1

- Valve
- Valve Sleeve
- Spacer Sleeve
- Spring

Step 2 Replace OE End Plugs

Place O-rings into shallow grooves on end plugs. Lubricate with Sonnax slippery stick O-LUBE. Roll on bench to size. Install end plugs with the O-ring end outboard.

Packaging Pocket 2

2A. • End Plugs, Small (4) • O-Rings, Small (6) 2 extra
2B. • End Plugs, Large • O-Rings, Large (2) 1 extra

Step 3 Replace OE Solenoid Relay Assembly

Packaging Pocket 3

- Valve
- Sleeve

Step 4 Replace OE Pressure Regulator Valve

CAUTION: Before removing OE boost sleeve, take note of the adjustable step/retainer location and ensure the Sonnax sleeve is installed at the same height/location. Failure to do so will result in incorrect line rise.

NOTE: Remove all OE bore components. Discard all except OE spring and retainer to use in Step 5.

Place O-ring into single, deep and narrow groove on balance pin. Lubricate with Sonnax slippery stick O-LUBE. Roll on bench to size. Install balance pin into pressure regulator valve, then install assembly into bore. Retain balance pin in the bottom of the bore with retaining clip. Make sure clip fits in groove securely. Due to casting variations, filing a small amount of material from the inboard face of the balance pin may be required. Remove only enough material to securely install the clip. For vacuum testing of the Sonnax valve, only the inboard (balance) and outboard/spring (SLT) locations need to be checked.

Packaging Pocket 4

- PR Valve
- Balance Pin
- O-Rings (2) 1 extra
- Retaining Clip

Step 5 Replace OE Boost Valve Assy

Place OE spring over open end of boost sleeve. Install spring end first and retain in bore with OE retainer. Make sure to install the Sonnax sleeve at the same height/location as the OE sleeve.

Packaging Pocket 5

- Valve
- Sleeve

NOTE: The parts listed here may be protected by patents 8,919,381 & 9,746,089.

Step 6 Replace OE Lockup Relay Control Valve

Packaging Pocket 6

- Valve
- Sleeve

Step 7 Replace OE B5 Control Valve Spring

CAUTION: This spring is used in “B” or “C” valve body castings only (Figures 1 and 4 of Installation and Testing booklet show I.D. location). If your B5 control valve did not originally use a spring (“A” casting or no letter), DO NOT install Sonnax spring.

If an “A” or no-letter casting core is to be used in a vehicle that originally contained a “B” or “C” casting, spring must be installed. Position spring on inboard end of valve.

Packaging Pocket 7

- Spring

Step 8 Replace OE Line Pressure Accumulator Piston & Springs

Place O-rings into shallow grooves on pistons. Lubricate with Sonnax slippery stick O-LUBE. Roll on bench to size. Install piston with open end facing outboard. Then install large spring followed by small spring.

Packaging Pocket 8

- Accumulator Piston
- O-Rings (3) 1 extra
- Spring, Large
- Spring, Small

Step 9 Replace OE Secondary Regulator Valve & Spring

Place scarf-cut seal into shallow groove on valve. Rolling the seal into a smaller diameter before placing the seal in the groove will help to keep the seal surface below the valve diameter, allowing for easier installation. Install valve into bore, seal end first, followed by the spring.

NOTE: Due to the design changes on the Sonnax valve, vacuum testing at the two inboard ports is not a valid sealing test. The Sonnax valve requires balance fluid to travel through the valve and push the seal outward to conform to the worn bore.

Packaging Pocket 9

- Valve
- Seals (2) 1 extra
- Spring

Step 10 Replace OE Lockup Control Valve Assembly

Packaging Pocket 10

- Valve
- Sleeve

NOTE: Re-use OE spring.

Step 11 Replace OE Springs

Packaging Pocket 11

11A. Line Relief Spring, Red
11B. B4 Release & Reverse Inhibit Small Springs (2), No color
 NOTE: These are not used in all castings.
11C. TCC Check Valve Spring, Yellow
11D. Cooler Bypass Spring, Large, No color
11E. TCC Check Valve Spring, White
IMPORTANT NOTE: The AW55-50SN/51SN, AF23/33, RE5F22A transmission is used in GM, Volvo, Saturn, Saab, Opel and Renault vehicles. What is a normal operating condition for one vehicle may not be for another due to the differences in operating modes and shift strategies used by the various manufacturers. The OE specifications given in this booklet are for GM units. Check OE information specific for your application during rebuild.

Electronic Cautions

Refloashing

The TCM (transmission control module) has memorized values that aid in shift control. Most of the manufacturers have upgrades for this application. Check OE bulletins and with your local dealers to ensure the latest updates have been performed for your application.

Shift Adaptations

This transmission uses adaptive strategy to adjust the various shift feels. After valve body work, these shift adaptations must be cleared and relearned or shift feel complaints and reduced transmission life can occur. The different manufacturers use different relearn procedures. Check OE specifications to ensure proper relearn for your application.

Solenoids

This unit uses 3 linear solenoids (SLU, SLT and SLS) calibrated to the valve body that are critical to shift feel (Figure 1). These solenoids overlap electronically and hydraulically which makes diagnosis difficult. Additional technical and rebuild/replacement information is included on pages 2 – 4. This transmission also uses 5 on/off style solenoids used to control the position of the shift valves. All solenoids should be cleaned to remove debris that results in sticking and malfunction.

Apply Component Chart

<table>
<thead>
<tr>
<th>Range</th>
<th>Gear</th>
<th>SOL S1</th>
<th>SOL S2</th>
<th>SOL S3</th>
<th>SOL S4</th>
<th>SOL S5</th>
<th>Second Clutch (B2)</th>
<th>Coast Clutch (B1)</th>
<th>Second Sprag (F1)</th>
<th>Low Sprag (F2)</th>
<th>Low/Rev Clutch (B3)</th>
<th>FWD Clutch (C1)</th>
<th>Direct Clutch (C2)</th>
<th>4-5 Clutch (C3)</th>
<th>3rd Band (B4)</th>
<th>1-2/Rev Clutch (B5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park</td>
<td>P</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Hold</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse</td>
<td>R Off*</td>
<td>Off</td>
<td>On*</td>
<td>Off</td>
<td>On*</td>
<td></td>
<td></td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>N Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Hold</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td>1 On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td></td>
<td>Hold</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limp</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interm</td>
<td>1 On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td></td>
<td>Hold</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1 E/B</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Applied</td>
<td>Applied</td>
<td>Hold</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If vehicle speed is above 7 km/h (4 mph), the TCM commands the shift solenoids to inhibit reverse
Solenoids

On/Off Shift Solenoids
The chart provides resistances for checking solenoids, function to aid in diagnosis, and connector and wire color to ensure proper assembly.

Linear (SLU, SLS, SLT) Solenoids
Handle these solenoids with care. Inadvertent turning of the adjuster at the end of the solenoid will affect pressure control and cause shift complaints. It is also common for these solenoids to crack at the casting neck flange area or connectors due to rough shipping and handling. Examine the solenoids first to ensure they are not cracked or otherwise damaged and are free of debris.

Linear Solenoid Installation
The length of the SLT and SLS solenoid snouts have changed, as well as the retaining bracket and installation orientation of the connectors. The SLU remains the same for all valve bodies. Proper matching of parts and correct installation is necessary to avoid shift complaints (Figures 1, 3–7).

No Code & A Code Castings
SLT and SLS: Connector faces up (away from 5 on/off solenoid) when properly installed (Figure 1).
- If short SLS and SLT solenoids (1.408” w/hole) are used, an early style bracket must be used (Figures 5 & 6).
- If long SLS and SLT solenoids (1.510” w/slot) are used, a late style bracket must be used (Figures 5 & 6).

B & C Code Castings
SLT & SLS: Connector faces down (toward the 5 on/off solenoid) when properly installed (Figure 4).
- Must use long solenoid (1.510” w/slot) (Figure 6)
- Must use late bracket (Figure 5)

Solenoid Apply Chart

<table>
<thead>
<tr>
<th>Solenoid</th>
<th>Connector</th>
<th>Wire Color (s)</th>
<th>Flow</th>
<th>Resistance</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLU</td>
<td>Black</td>
<td>Green/Brown</td>
<td>N.C.</td>
<td>5.0 - 5.6 ohms at 68°</td>
<td>TCC apply, reverse 1-2, 2-3 up/down shift</td>
</tr>
<tr>
<td>SLT</td>
<td>Blue</td>
<td>Green/Gray</td>
<td>N.O.</td>
<td>5.0 - 5.6 ohms at 68°</td>
<td>Line rise, engagements, converter pressure</td>
</tr>
<tr>
<td>SLS</td>
<td>Green</td>
<td>Blue/Red</td>
<td>N.O.</td>
<td>5.0 - 5.6 ohms at 68°</td>
<td>Clutch pressure, shift quality</td>
</tr>
<tr>
<td>S1</td>
<td>Black</td>
<td>White</td>
<td>N.O.</td>
<td>13.5 - 15.5 ohms at 68°</td>
<td>1st, 1-2 shift, reverse</td>
</tr>
<tr>
<td>S2</td>
<td>Black/Gray</td>
<td>Black</td>
<td>N.O.</td>
<td>13.5 - 15.5 ohms at 68°</td>
<td>2nd, 3rd, 4-5 shift</td>
</tr>
<tr>
<td>S3</td>
<td>Gray</td>
<td>Yellow</td>
<td>N.C.</td>
<td>13.5 - 15.5 ohms at 68°</td>
<td>Reverse, 3-4 shift fwd engagement</td>
</tr>
<tr>
<td>S4</td>
<td>Blue/Green</td>
<td>Purple/Red</td>
<td>N.O.</td>
<td>13.5 - 15.5 ohms at 68°</td>
<td>3, 4, 5, 2-3 shift</td>
</tr>
<tr>
<td>S5</td>
<td>Green/Red</td>
<td>Blue/Black - '02 Volvo</td>
<td>N.C.</td>
<td>13.5 - 15.5 ohms at 68°</td>
<td>Reverse engagement</td>
</tr>
</tbody>
</table>
Important Solenoid Port Check

Always double-check that the solenoid ports mate radially to the ports in the valve body casting.

Linear Solenoid Adjustment

The adjustment screws on the end of the solenoids set the spring force against the valve. The spring opposes the force of the solenoid coil. To avoid severe drivability issues, the adjuster should be set at or near the OE position, which averages .195” (Figure 7) measured from the end of the adjuster to the end of the solenoid manifold. If the adjustment is too far off (either in or out) a variety of drivability issues occur. In many instances, an out-of-adjustment solenoid may cause the TCM to set a gear ratio code or a solenoid amperage high/low code. Turning the SLT adjuster counter-clockwise reduces SLT pressure, which will lower line and converter pressure. Turning the SLS adjuster counter-clockwise reduces SLS pressure, which will reduce clutch apply pressures. The charts in Figures 8 & 9 are for reference on which solenoids to adjust and in what direction, should tuning be required.

Heat Testing Linear Solenoids

A common issue found with the linear solenoids is a hot drivability concern. This happens when the plunger starts to seize within the coil bushings at operating temperature. The results are acceptable shifts when cool, but a harsh downshift or flare upshift (often 3-2 and 2-3) over the 215°F range. If you suspect this, a slow or sticking linear solenoid can be identified by a hot soak test. Heat the solenoid to operating temperature. Using a shop rag or some method of protecting your hand from the heat, pry and hold the valve away from the plunger (with a pick or small screwdriver through casting slot) and shake the solenoid. In a good solenoid, the plunger shaft will be free to rattle back and forth (Figures 10 & 11).

Linear Solenoid Strategy

<table>
<thead>
<tr>
<th>Gear</th>
<th>SLU</th>
<th>SLT</th>
<th>SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park/Drive</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park/Reverse</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1-2, 2-1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4, 4-3</td>
<td>TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5, 5-4</td>
<td>TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Up & Downshifts</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Key: X = Greatest effect of this solenoid on shift indicated. TC = Drivability effect on converter clutch.

Solenoid Adjustments

SLT Line Rise Solenoid

- **Blue Connector**
 - **Increase SLT pressure if:**
 - Neutral-to-Drive delay
 - Long shifts
 - Low cooler flow
 - **Decrease SLT pressure if:**
 - Long 2-3 shift due to clutch overlap (2-3 Bind-up)
 - 3-2 Coastsdown bump
 - Harsh forward engagement
 - Harsh TCC apply
 - Loss of lube or cooler flow

SLS Shift Pressure Solenoid

- **Green Connector**
 - **Increase SLS pressure if:**
 - Soft upshifts
 - Low speed 2-3 flare
 - Slight RPM flare on 3-4, 4-5 shifts
 - **Decrease SLS pressure if:**
 - Harsh reverse
 - Harsh 1-2 shift
 - Harsh 2-3 shift with end bump
 - Loss of TCC apply
 - High C1 clutch pressure
 - 3-2 Shift flare/bang

SLU Lockup Solenoid

- **Black Connector**
 - **Decrease SLU pressure if:**
 - Soft shifts
 - Early TCC apply
 - No TCC lockup
 - **Increase SLU pressure if:**
 - Hard 1-2, 2-1 shift
 - Firm/Late TCC apply

Figure 8 & 9

Figure 10

Figure 11

5.0–5.6 ohms

Caution lifting lock tab

Pry valve for bench test.

This end of solenoid seals an oil circuit at large O.D. of clutch control valve and can be vacuum tested.

Contaminants lodge in this end on OE design.

Cap and crimp determine the stack-up length and plunger travel.
Solenoid Replacements
Aisin AW 55-50SN, 55-51SN, AF23/33 and RE5F22A linear solenoids are used to control line rise (SLT), the converter clutch (SLU) and the oil flow rate and accumulation for the clutch circuits (SLS). The flow-to and function of these solenoids overlap, making diagnosis difficult. The solenoids are prone to sticking of the internal pintle, creating inconsistent movement of the solenoid valves. Shift complaints and pressure/flow related issues result. Remanufactured linear solenoid kits (set of three solenoids) from Sonnax (Figure 12) were developed with an exclusive Sonnax process that eliminates sticking solenoid problems. These solenoids are 100% tested for pressure curve performance on a valve body test stand and calibrated to OE specifications. Readjustment should not be required if the valve body leakage has been addressed and a relearn process completed.

Casting & Plate Combinations
There are various castings and plates that must be properly matched to ensure correct function. The front control valve body (Figure 13) may have an exhaust hole that will correlate to the need for a check valve & spring on the opposite side (Figure 14). Castings with this exhaust hole must be matched with a middle control casting with 2 flags (Figure 15) and a rear control plate with the two noted orifices.

Remanufactured Linear Solenoid Kits

<table>
<thead>
<tr>
<th>Sonnax Part Number</th>
<th>Kit Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>59947-68K</td>
<td>Early/Short</td>
</tr>
<tr>
<td>59947-69K</td>
<td>Early/Long</td>
</tr>
<tr>
<td>59947-70K</td>
<td>Late/Long</td>
</tr>
</tbody>
</table>

Caution: Ensure correct style of SLS/SLT solenoid, based on connector direction and bracket design (Figures 1, 4 – 6).
Critical Wear Areas & Vacuum Test Locations

NOTE: OE valves are shown in rest position and should be tested in rest position unless otherwise indicated. Test locations are pointed to with an arrow. Springs are not shown for visual clarity. Low vacuum reading indicates wear and Sonnax parts noted for replacement.
For specific vacuum test information, refer to individual part instructions included in kits and available at www.sonnax.com.

AW55-50SN Valve Body

Neutral Relay Valve
• Delayed Forward
• Increased throttle required for engagement
Replace with Sonnax Part No. 59947-35K
Requires F-59947-TL34 & VB-FIX

Front Control Valve Body
(No exhaust style)

Solenoid Modulator Valve
• Low line pressure
• No 3rd, 4th or 5th
• 5th Gear only
• No lockup
Replace with Sonnax Part No. 59947-34K
Requires F-59947-TL34 & VB-FIX

Solenoid Relay Valve & Plunger/Sleeve Assembly
• No lockup
• Shift concerns
• Engine stall on engagement
• 2-3 Flare
• No 2-3
• Harsh shifts
• B5 Clutch distress
Replace with Sonnax Part No. 59947-05K

3rd Gear Band (B4) Release Valve
• 2-3 Flare
• 2-3 Neutral
• 3-2 Harsh
• 3-2 Neutral
Replace with Sonnax Part No. 59947-26K
Requires F-59947-TL26 & VB-FIX

Seal the port on the opposite side of casting when testing these locations.

Main Pressure Regulator Valve & Boost Valve Assembly
• Soft shifts
• Delayed/Harsh shifts
• Delayed engagement
• TCC apply & release concerns
Replace with Sonnax Part No. 59947-07K or 59947-12K
59947-12K Requires F-59947-TL12 & VB-FIX

Middle Control Valve Body
(Cover side)

Middle Control Valve Body
(Rear side)
Critical Wear Areas & Vacuum Test Locations

NOTE: OE valves are shown in rest position and should be tested in rest position unless otherwise indicated. Test locations are pointed to with an arrow. Springs are not shown for visual clarity. Low vacuum reading indicates wear and Sonnax parts noted for replacement.
For specific vacuum test information, refer to individual part instructions included in kits and available at www.sonnax.com.

AW55-50SN Valve Body • Rear Control (Back, Front and Side views)

Shift Pressure Control Valve
- 2-3, 3-4, 4-5 Harsh
- No 5th
- Low Reverse pressure
- B1, B2, C2 Clutch burned
- High line pressure in Reverse
Replace with Sonnax Part No. 59947-38K

Line Pressure Control (SLT) Accumulator Assembly
- Low line pressure
- Delayed Forward
- Harsh shifts
- 2-3 Flare
- Erratic SLT pressure
Replace with Sonnax Part No. 59947-LPC

Shift Pressure Control Plunger Valve
- 2-3 Quality poor
- 3-4, 4-5 Harsh
- High line pressure
- B1, B2, C2 Clutch burned
- Low Reverse pressure
Replace with Sonnax Part No. 59947-75K

M2 Shift Valve
- No Reverse
- No Neutral control
- No 1st, 2nd, 3rd & 4th

Shift Pressure Relay Valve
- Slips in Reverse
- No engine braking in 2nd, 3rd & 4th

Secondary Regulator Valve
- TCC slip/surge
- Overheated fluid, bushings & converter
- Poor shift quality
- Harsh Reverse
- Low lube oil flow
- Bushing failure
Replace with Sonnax Part No. 59947-16K

Lockup Relay Valve
- TCC apply & release concerns
- Inadequate lubrication
- TCC codes
Replace with Sonnax Part No. 59947-01K or 59947-77K

Lockup Control Valve & Sleeve/Plunger Assembly
- TCC apply & release concerns
- Burnt converter
- TCC codes
Replace with Sonnax Part No. 59947-03K or 59947-29K

59947-29K Requires F-59947-TL29, F-15741-TL29PL & VB-FIX

Seal the port on the opposite side of casting when testing these locations.

Lockup Control Valve
- TCC apply & release concerns
- Burnt converter
- TCC codes
Replace with Sonnax Part No. 59947-03K or 59947-29K

59947-29K Requires F-59947-TL29, F-15741-TL29PL & VB-FIX

Secondary Regulator Valve
- TCC slip/surge
- Overheated fluid, bushings & converter
- Poor shift quality
- Harsh Reverse
- Low lube oil flow
- Bushing failure
Replace with Sonnax Part No. 59947-16K

59947-77K Requires F-97741-TL20 & VB-FIX

Side View

No. 2 Rear Control Valve Body
OE Exploded View

Front & Middle Control Valve Body • AW55-50SN Valve Body Shown Here

NOTE: Depending upon vehicle application, the OE springs shown may not be present.

Front Control Valve Body
(No-exhaust style)

Middle Control Valve Body
(Cover side)

Front Control Valve Body Descriptions

<table>
<thead>
<tr>
<th>I.D. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Forward Clutch (C1) Control Valve</td>
</tr>
<tr>
<td>102</td>
<td>Neutral Relay Valve</td>
</tr>
<tr>
<td>103</td>
<td>2nd Coast Clutch (B1) Control Valve</td>
</tr>
<tr>
<td>104</td>
<td>Solenoid Modulator Valve</td>
</tr>
</tbody>
</table>

Middle Control Valve Body Descriptions

<table>
<thead>
<tr>
<th>I.D. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Manual Valve</td>
</tr>
<tr>
<td>202</td>
<td>3rd Gear Band (B4) Release Valve</td>
</tr>
<tr>
<td>203</td>
<td>U1 Shift Valve</td>
</tr>
<tr>
<td>204</td>
<td>M1 Shift Valve</td>
</tr>
<tr>
<td>205</td>
<td>U2 Shift Valve</td>
</tr>
<tr>
<td>206</td>
<td>Primary Regulator Valve & Plunger Valve Assembly</td>
</tr>
<tr>
<td>207</td>
<td>Reverse Shift Ball Check Valve</td>
</tr>
<tr>
<td>208</td>
<td>Solenoid Relay Valve & Plunger Valve Assembly</td>
</tr>
</tbody>
</table>
OE Exploded View

Rear & No. 2 Rear Control Valve Body • AW55-50SN Valve Body Shown Here

Rear Control Valve Body Descriptions

<table>
<thead>
<tr>
<th>I.D. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>3rd Gear Band (B4) Control Valve</td>
</tr>
<tr>
<td>302</td>
<td>Shift Pressure Relay Valve</td>
</tr>
<tr>
<td>303</td>
<td>M2 Shift Valve</td>
</tr>
<tr>
<td>304</td>
<td>Shift Pressure Control Valve & Plunger Valve Assembly</td>
</tr>
<tr>
<td>305</td>
<td>Secondary Regulator Valve</td>
</tr>
<tr>
<td>306</td>
<td>Line Pressure Control (SLT) Accumulator</td>
</tr>
<tr>
<td>307</td>
<td>1-2 Reverse Clutch (B5) Control Valve</td>
</tr>
<tr>
<td>308</td>
<td>Lockup Relay Valve & Plunger Valve Assembly</td>
</tr>
</tbody>
</table>

No. 2 Rear Control Valve Body Descriptions

<table>
<thead>
<tr>
<th>I.D. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>Lockup Control Valve & Plunger Valve Assembly</td>
</tr>
<tr>
<td>402</td>
<td>Reverse Shift Restrict Ball Check Valve</td>
</tr>
<tr>
<td>403</td>
<td>2nd Clutch (B2) Control Valve</td>
</tr>
</tbody>
</table>

Torque Specification Chart

<table>
<thead>
<tr>
<th>Bolt ID</th>
<th>Length (mm)</th>
<th>Torque (in-lb)</th>
<th>No. Bolts Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>62</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>28</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>35</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>40</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>49.5</td>
<td>62</td>
<td>4</td>
</tr>
<tr>
<td>K</td>
<td>50</td>
<td>89</td>
<td>4</td>
</tr>
<tr>
<td>L</td>
<td>50</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>55</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>62</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>O</td>
<td>76</td>
<td>62</td>
<td>1</td>
</tr>
</tbody>
</table>